Abstract

The dewetting dynamics of a supported bilayer polymer thin film on a solid substrate is investigated using grazing incidence x-ray photon correlation spectroscopy. We find that the top layer dewets via the spinodal mechanism. The kinetics of the dewetting is studied by monitoring the time evolution of the surface diffuse x-ray scattering intensity. We study the time evolution of fluctuations about the average surface structure by measuring the two-time x-ray intensity fluctuation correlation functions. Using these two-time correlation functions we quantify the crossover from early-time diffusive dynamics to hydrodynamics. The early diffusive regime satisfies dynamic universality. The two-time correlation functions also quantify the onset of hydrodynamic effects. The hydrodynamic regime is observed during the spinodal dewetting process as these interactions are not screened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call