Abstract
In the theory of denotational semantics of programming languages, several authors have constructed various kinds of universal domains. We present here a categorical generalization of a well-known result in model theory, which we use to characterize large classes of reasonable categories that contain universal homogeneous objects. The existence of such objects is characterized by the condition that the finite objects in the category satisfy the amalgamation property. We derive from this the existence and uniqueness of universal homogeneous domains for several categories of bifinite domains, with embedding-projection-pairs as morphisms. We also obtain universal homogeneous objects for various categories of stable bifinite domains. In contrast, several categories of event domains and concrete domains and the category of all coherent Scott-domains do not contain universal homogeneous objects. Finally, we show that all our constructions can be performed effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.