Abstract
We propose a realistic setup, inspired by already existing experiments, within which we develop a general formalism for the implementation of distributed quantum gates. Mediated by a quantum link that establishes a bidirectional quantum channel between distant nodes, our proposal works both for inter- and intra node communication and handles scenarios ranging from the few to the many modes limit of the quantum link. We are able to design fast and reliable state transfer protocols in every regime of operation, which, together with a detailed description of the scattering process, allows us to engineer two sets of deterministic universal distributed quantum gates. Gates whose implementation in quantum networks does not need entanglement distribution nor measurements. By employing a realistic description of the physical setup we identify the most relevant imperfections in the quantum links as well as optimal points of operation with resulting infidelities of $1-F \approx 10^{-2}-10^{-3}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.