Abstract
Quasi-static transformations, or slow quenches, of many-body quantum systems across quantum critical points generate topological defects. The Kibble-Zurek mechanism regulates the appearance of defects in a local quantum system through a classical combinatorial process. However, long-range interactions disrupt the conventional Kibble-Zurek scaling and lead to a density of defects that is independent of the rate of the transformation. In this Letter, we analytically determine the complete full counting statistics of defects generated by slow annealing a strong long-range system across its quantum critical point. We demonstrate that the mechanism of defect generation in long-range systems is a purely quantum process with no classical equivalent. Furthermore, universality is not only observed in the defect density but also in all the moments of the distribution. Our findings can be tested on various experimental platforms, including Rydberg gases and trapped ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.