Abstract
We define a universal cycle for a class of $n$-permutations as a cyclic word in which each element of the class occurs exactly once as an $n$-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of permutations of length $3$, or of a set of permutations of mixed lengths $3$ and $4$. Nous définissons un cycle universel pour une classe de $n$-permutations comme un mot cyclique dans lequel chaque élément de la classe apparaît une unique fois comme $n$-facteur. Nous donnons un résultat général pour les classes cycliquement closes, et détaillons la situation où la classe de permutations est définie par motifs exclus, avec des motifs de taille $3$, ou bien à la fois des motifs de taille $3$ et de taille $4$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.