Abstract
A general quantitative model for ontogenetic growth of organisms was derived by West et al. based on fundamental principles for the allocation of metabolic energy in which a universal parameterless growth curve was established in terms of the biomass ratio and a dimensionless biological time. This model was then extended by Guiot et al. to account for the growth of tumors in vivo in which the fractional scaling exponent p becomes a dynamic parameter depending on time t . In this paper, we present a method that may be used effectively to construct a generalized universal growth curve for such a growth law model with an arbitrary dynamically varying fractional exponent. As by-products of this method, we show that the assumption that a biological time variable flows forward in the universal curve allows us to predict the behavior of p with regard to the developmental stages of organisms characterized by body mass which is consistent with the findings of Guiot et al. based on biomedical data, and that, the universal curve is independent of the properties of p as a function of t . We also consider the situation when time increases discretely and the fractional scaling exponent is periodic. We observe the familiar, but superimposed, period-doubling and transition-to-chaos phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.