Abstract

Abstract We consider the smallest-area universal covering of planar objects of perimeter 2 (or equivalently, closed curves of length 2) allowing translations and discrete rotations. In particular, we show that the solution is an equilateral triangle of height 1 when translations and discrete rotations of π are allowed. We also give convex coverings of closed curves of length 2 under translations and discrete rotations of multiples of π/2 and of 2π/3. We show that no proper closed subset of that covering is a covering for discrete rotations of multiples of π/2, which is an equilateral triangle of height smaller than 1, and conjecture that such a covering is the smallest-area convex covering. Finally, we give the smallest-area convex coverings of all unit segments under translations and discrete rotations of 2π/k for all integers k=3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.