Abstract

We present lock-free and wait-free universal constructions for implementing large shared objects. Most previous universal constructions require processes to copy the entire object state, which is impractical for large objects. Previous attempts to address this problem require programmers to explicitly fragment large objects into smaller, more manageable pieces, paying particular attention to how such pieces are copied. In contrast, our constructions are designed to largely shield programmers from this fragmentation. Furthermore, for many objects, our constructions result in lower copying overhead than previous ones. Fragmentation is achieved in our constructions through the use of load-linked, store-conditional, and validate operations on a "large" multiword shared variable. Before presenting our constructions, we show how these operations can be efficiently implemented from similar one-word primitives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.