Abstract

We report a theoretical investigation on conductance fluctuation of mesoscopic systems. Extensive numerical simulations on quasi-one-dimensional, two-dimensional, and quantum dot systems with different symmetries [circular orthogonal ensemble, circular unitary ensemble (CUE), and circular symplectic ensemble (CSE)] indicate that the conductance fluctuation can reach a universal value in the crossover regime for systems with CUE and CSE symmetries. The conductance distribution is found to be a universal function from diffusive to localized regimes that depends only on the average conductance, dimensionality, and symmetry of the system. The numerical solution of DMPK equation agrees with our result in quasi-one dimension. Our numerical results in two dimensions suggest that this universal conductance fluctuation is related to the metal-insulator transition. In the localized regime with average conductance $⟨G⟩<0.3$, the conductance distribution seems to be superuniversal independent of dimensionality and symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.