Abstract

Quantum state tomography is a basic tool in quantum information, but it becomes a challenging task that requires an immense number of measurement configurations as the system dimension grows. We implement an adaptive compressive tomography scheme capable of reconstructing any arbitrary low-rank spectral-temporal optical signal with extremely few measurement settings and without any ad hoc assumption about the initially unknown signal. This is carried out by implementing projections onto arbitrary user-specified optical modes. We present conclusive experimental results for both temporal modes and frequency bins, which showcase the versatility of our method and thereby introduce a universal optical reconstruction framework to these platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.