Abstract
The theory of atoms in molecules leads to a convenient partition of the crystalline space into atomic regions that are space filling and allow a decomposition of the bulk compressibility of a crystal as a volume-weighted sum of local compressibilities. Using available ab initio calculations for the complete alkali halides (AX) family in the rock salt phase and some selected spinels, we find that the pressure at the limit of stability of the crystal matches exactly those of the individual ions (or group of ions), pointing to the conclusion that the ionic volumes at the equilibrium define the relative compressibilities of the ions (or group of ions) in the crystal at all pressures. We also analyse the functional dependence between the ionic compressibilities and volumes for the AX family. We show that these ions exhibit universal behaviour when the local bulk moduli are correlated with the pressure referred to the spinodal pressure value, instead of volume. This fact allows us to define a generalised equation of state for the individual ions based on the spinodal instability hypothesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.