Abstract
We prove that linear groups over rings of non-commutative Laurent polynomials $D_{\tau}$ have Tits systems with the corresponding affine Weyl groups and have universal central extensions if $|Z(D)|\geq 5$ and $|Z(D)|\neq 9$. We also determine structures of $K_1$-groups and identify generators of $K_2$-groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.