Abstract

The crossing of a continuous phase transition gives rise to the formation of topological defects described by the Kibble-Zurek mechanism (KZM) in the limit of slow quenches. The KZM predicts a universal power-law scaling of the defect density as a function of the quench time. We focus on the deviations from KZM experimentally observed in rapid quenches and establish their universality. While KZM scaling holds below a critical quench rate, for faster quenches the defect density and the freeze-out time become independent of the quench rate and exhibit a universal power-law scaling with the final value of the control parameter. These predictions are verified in several paradigmatic scenarios in both the classical and quantum domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.