Abstract

We show that four-dimensional black holes become stable below certain mass when the Einstein-Hilbert action is supplemented with higher-curvature terms. We prove this to be the case for an infinite family of ghost-free theories involving terms of arbitrarily high order in curvature. The new black holes, which are non-hairy generalizations of Schwarzschild's solution, present a universal thermodynamic behavior for general values of the higher-order couplings. In particular, small black holes have infinite lifetimes. When the evaporation process makes the semiclassical approximation break down (something that occurs after a time which is usually infinite for all practical purposes), the resulting object retains a huge entropy, in stark contrast with Schwarzschild's case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call