Abstract

Mean Field Games provide a powerful framework to analyze the dynamics of a large number of controlled objects in interaction. Though these models are much simpler than the underlying differential games they describe in some limit, their behavior is still far from being fully understood. When the system is confined, a notion of “ergodic state” has been introduced that characterizes most of the dynamics for long optimization times. Here we consider a class of models without such an ergodic state, and show the existence of a scaling solution that plays a similar role. Its universality and scaling behavior can be inferred from a mapping to an electrostatic problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.