Abstract

We investigate the structure of many-body wave functions of 1D quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropy indicates a model-dependent multifractal scaling of the wave functions at any nonzero measurement rate. The subleading term contains universal information about measurement-induced phase transitions and plays the role of an order parameter, being constant nonzero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide robust numerical evidence investigating a variety of quantum many-body systems and provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call