Abstract

To predict whether preclinical lipid nanoparticle (LNP) delivery will translate in humans, it is necessary to understand whether the mechanism used by LNPs to enter cells is conserved across species. In mice, non-human primates, and humans, LNPs deliver RNA to hepatocytes by adsorbing apolipoprotein E (ApoE), which binds low-density lipoprotein receptor (LDLR). A growing number of LNPs can deliver RNA to nonhepatocytes, suggesting that ApoE- and LDLR-independent interactions could affect LNP tropism. To evaluate this hypothesis, we developed a universal DNA barcoding system that quantifies how chemically distinct LNPs deliver small interfering RNA in any mouse model, including genetic knockouts. We quantified how 98 different LNPs targeted 11 cell types in wildtype, LDLR-/-, very low-density lipoprotein receptor, and ApoE-/- mice, studying how these genes, which traffic endogenous lipids, affected LNP delivery. These data identified a novel, stereopure LNP that targets Kupffer cells, endothelial cells, and hepatocytes in an ApoE-independent manner. These results suggest that non-ApoE interactions can affect the tropism of LNP-RNA drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.