Abstract

Equilibrium finite temperature observables of a CFT can be described by a local effective action for background fields — a “thermal effective action”. This effective action determines the asymptotic density of states of a CFT as a detailed function of dimension and spin. We discuss subleading perturbative and nonperturbative corrections to the density, comparing with free and holographic examples. We furthermore show how to use the thermal effective action on more complicated geometries at special locations called “hot spots”. The hot spot idea makes a prediction for a CFT partition function on a higher-dimensional version of a genus-2 Riemann surface, in a particular high temperature limit. By decomposing the partition function into a novel higher-dimensional version of genus-2 conformal blocks (which we compute at large scaling dimension), we extract the asymptotic density of heavy-heavy-heavy OPE coefficients in a higher-dimensional CFT. We also compute asymptotics of thermal 1-point functions using the same techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.