Abstract

We construct universal associative envelopes for the nonassociative triple systems arising from the trilinear operations of Bremner and Peresi applied to the 2-dimensional simple associative triple system. We use noncommutative Gröbner bases to determine monomial bases, structure constants, and centers of the universal envelopes. We show that the infinite dimensional envelopes are closely related to the down-up algebras of Benkart and Roby. For the finite dimensional envelopes, we determine the Wedderburn decompositions and classify the irreducible representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.