Abstract

A long polyelectrolyte chain collapses into a nano-sized particle upon the addition of counterions under appropriate solution conditions. This phenomenon forms the basis for a simple universal method for aqueous synthesis of ultra-small (<10 nm) metal, metal oxide, and other types of nanoparticles in the following manner: the counterion-collapsed polyelectrolyte chains are made stable by crosslinking, effectively trapping the counterions, which are subsequently chemically modified, to form metal nanoparticles via reduction or metal oxides nanoparticles via oxidation, within the collapsed polymer nanoparticle. This highly versatile platform methodology can be applied to almost any polyelectrolyte–counterion pair, making possible the rapid development of syntheses of different nanoparticles within the same chemical environment. Using poly(acrylic acid) as a model system, a methodology for the optimization of conditions for the polyelectrolyte collapse by various mono- and multi-valent metal cations is developed. The optimal counterion concentration did not correlate with ionic strength and metal ion valency and was highly variable from system to system. By monitoring the polyelectrolyte conformation using viscosity and turbidity measurements, the appropriate metal ion concentration for each nanoparticle system was determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call