Abstract

We generalize recent theoretical work on the minimal number of layers of narrow deep belief networks that can approximate any probability distribution on the states of their visible units arbitrarily well. We relax the setting of binary units (Sutskever & Hinton, 2008 ; Le Roux & Bengio, 2008 , 2010 ; Montúfar & Ay, 2011 ) to units with arbitrary finite state spaces and the vanishing approximation error to an arbitrary approximation error tolerance. For example, we show that a q-ary deep belief network with L > or = 2 + (q[m-delta]-1 / (q-1)) layers of width n < or = + log(q) (m) + 1 for some [Formula : see text] can approximate any probability distribution on {0, 1, ... , q-1}n without exceeding a Kullback-Leibler divergence of delta. Our analysis covers discrete restricted Boltzmann machines and naive Bayes models as special cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.