Abstract
Neural networks have been successfully applied to many applications due to their approximation capability. However, complicated network structures and algorithms will lead to computational and time-consuming burdens. In order to satisfy demanding real-time requirements, many fast learning algorithms were explored in the past. Recently, a fast algorithm, Extreme Learning Machine (ELM) (Huang et al. 70:489---501, 2006) was proposed. Unlike conventional algorithms whose neurons need to be tuned, the input-to-hidden neurons of ELM are randomly generated. Though a large number of experimental results have shown that input-to-hidden neurons need not be tuned, there lacks a rigorous proof whether ELM possesses the universal approximation capability. In this paper, based on the universal approximation property of an orthonormal method, we firstly illustrate the equivalent relationship between ELM and the orthonormal method, and further prove that neural networks with ELM are also universal approximations. We also successfully apply ELM to the identification of QoS violation in the multimedia transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.