Abstract

We uncover a surprising gap in optics with regards to angular dispersion (AD). A systematic examination of pulsed optical field configurations classified according to their three lowest dispersion orders resulting from AD (the axial phase velocity, group velocity, and group-velocity dispersion) reveals that the majority of possible classes of fields have eluded optics thus far. This gap is due in part to the limited technical reach of the standard components that provide AD such as gratings and prisms, but due in part also to misconceptions regarding the set of physically admissible field configurations that can be accessed via AD. For example, it has long been thought that AD cannot yield normal group-velocity dispersion in free space. We introduce a "universal AD synthesizer": a pulsed-beam shaper that produces a wavelength-dependent propagation angle with arbitrary spectral profile, thereby enabling access to all physically admissible field configurations realizable via AD. This universal AD synthesizer is a versatile tool for preparing pulsed optical fields for dispersion cancellation, optical signal processing, and nonlinear optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.