Abstract

Timely and accurately detection of small molecule pollutants is quite necessary to control environmental pollution and reduce harmfulness. Herein, a reusable optical fiber chemiluminescent biosensor (ROFC) was proposed for universal and rapid detection of two representative pollutants, pesticide atrazine (ATZ) and endocrine disruptor bisphenol A (BPA). The optical fiber modified with hapten-protein conjugates was regarded as both bio-probe and chemiluminescence signal transmission element, which effectively improved the light transmission efficiency and signal-to-noise ratio of the system. High-sensitive chemiluminescence signal detection is realized with a miniaturized ultrasensitive photodiode detector. Good regeneration performance of bio-probe can reduce detection cost and ensure detection reproducibility. Based on indirect competitive immunoassay principle, the chemiluminescence signal decreased with increasing pollutant concentration resulting from the less amount of antibody combined on the bio-probe surface. Under optimal conditions, the whole assay was achieved within 25 min with linear range of 1–100 μg/L and detection limits (LOD) for atrazine and BPA are 0.029 μg/L and 0.025 μg/L, respectively. The immunosensing optical fiber probe can be reused for 150 times at least without losing obvious bioactivity. The method was successfully applied to the detection of ATZ and BPA in three environmental samples, where recoveries between 93.4% and 116.6% were achieved. The ROFC biosensor provides a feasible platform for rapid detection of multiple small molecule pollutants in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call