Abstract

The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with $$d^{1.5 + o (1)}$$ for input polynomials of degree d, and with the square of the bit size of the ground field. It relies on a variant of the Cantor–Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.