Abstract
Many studies have shown that industrial as well as non-industrial business organisations present a growing need of robust and more efficient multivariate monitoring schemes in order to be able to monitor several quality characteristics simultaneous. To monitor two or more parameters simultaneously, several monitoring schemes are used concurrently in most of the cases instead of using a single scheme. Thus, in this paper, the exponentially weighted moving average (EWMA), double EWMA (DEWMA) and the recent triple EWMA (TEWMA) procedures are used to develop new single univariate and multivariate Max-type monitoring schemes for linear profiles under the assumptions of fixed and random linear models to monitor the regression parameters and variance error simultaneously. It is observed that the newly proposed schemes are better alternatives of the classical univariate and multivariate EWMA, DEWMA and TEWMA schemes for linear profiles in terms of the average run-length (<i>ARL</i>) and expected <i>ARL</i> profiles. Numerical examples are presented using simulated and real-life data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.