Abstract
ABSTRACTThe well‐developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well‐suited to problems where there is little or no theory to guide a choice of probability models, e.g. smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.