Abstract

We study rational functions $f$ of degree $d+1$ such that $f$ is univalent in the exterior unit disc, and the image of the unit circle under $f$ has the maximal number of cusps ($d+1$) and double points $(d-2)$. We introduce a bi-angled tree associated to any such $f$. It is proven that any bi-angled tree is realizable by such an $f$, and moreover, $f$ is essentially uniquely determined by its associated bi-angled tree. This combinatorial classification is used to show that such $f$ are in natural 1:1 correspondence with anti-holomorphic polynomials of degree $d$ with $d-1$ distinct, fixed critical points (classified by their Hubbard trees).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.