Abstract
A two switch three-phase power factor correction SEPIC converter with coupled inductor operating in discontinuous current mode is presented. The switches voltage stress in this converter is related to peak of phase voltage instead of line voltage. Also, applying coupled inductor technique, not only reduces number of the magnetic cores but also with suitable design of coupling coefficient, input current ripple cancellation is achieved, so smaller inductor size can be used as input inductance. Thus, the proposed converter only applies three magnetic cores and <;5% THD is achieved with the proposed converter in a wide range of load and input voltage variations. Input phases are decoupled so converter can keep unity power factor even under unbalanced input source. Operating modes of the proposed converter is explained, and its input impedance is determined. It is verified that input impedance is pure resistive. The mathematical analysis and design procedure are discussed. Design example and experimental results from 400 W prototype with 220 V line to natural input RMS phase voltage and with 400 V output voltage operating at 40 kHz are presented to verify theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.