Abstract
In this work, a hybrid control scheme, uniting bounded control with model predictive control (MPC), is proposed for the stabilization of linear time-invariant systems with input constraints. The scheme is predicated upon the idea of switching between a model predictive controller, that minimizes a given performance objective subject to constraints, and a bounded controller, for which the region of constrained closed-loop stability is explicitly characterized. Switching laws, implemented by a logic-based supervisor that constantly monitors the plant, are derived to orchestrate the transition between the two controllers in a way that safeguards against any possible instability or infeasibility under MPC, reconciles the stability and optimality properties of both controllers, and guarantees asymptotic closed-loop stability for all initial conditions within the stability region of the bounded controller. The hybrid control scheme is shown to provide, irrespective of the chosen MPC formulation, a safety net for the practical implementation of MPC, for open-loop unstable plants, by providing a priori knowledge, through off-line computations, of a large set of initial conditions for which closed-loop stability is guaranteed. The implementation of the proposed approach is illustrated, through numerical simulations, for an exponentially unstable linear system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.