Abstract

A unitary transformation between Cartesian and polar pixellations of finite two-dimensional images is obtained from the su(2) model for discrete and finite signals. This transformation analyzes the original image into its finite Cartesian "Laguerre-Kravchuk" modes (involving Wigner little-d functions) and synthesizes it back using a polar mode basis with the same set of mode coefficients. The polar basis is derived from the quantum angular momentum theory, and its modes are given by Clebsch-Gordan coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.