Abstract

We call a measure-preserving action of a countable discrete group on a standard probability space tempered if the associated Koopman representation restricted to the orthogonal complement to the constant functions is weakly contained in the regular representation. Extending a result of Hjorth, we show that every tempered action is antimodular, i.e., in a precise sense “orthogonal” to any Borel action of a countable group by automorphisms on a countable rooted tree. We also study tempered actions of countable groups by automorphisms on compact metrizable groups, where it turns out that this notion has several ergodic theoretic reformulations and fits naturally in a hierarchy of strong ergodicity properties strictly between ergodicity and strong mixing. Bibliography:s 25 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.