Abstract

The unitary operator that transforms a harmonic oscillator system of time-dependent frequency into that of a simple harmonic oscillator of different timescale is found, with and without an inverse-square potential. It is shown that for both cases, this operator can be used in finding complete sets of wave functions of a generalized harmonic oscillator system from the well-known sets of the simple harmonic oscillator. Exact invariants of the time-dependent systems can also be obtained from the constant Hamiltonians of unit mass and frequency by making use of this unitary transformation. The geometric phases for the wave functions of a generalized harmonic oscillator with an inverse-square potential are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.