Abstract

A unitary qubit lattice algorithm, which scales almost perfectly to the full number of cores available (e.g., 216000 cores on a CRAY XT5), is used to examine quantum turbulence and its interrelationship to classical turbulence with production runs on grids up to 57603. The maximal grids achievable by conventional CFD for quantum turbulence is just 20483, and artificial dissipation had to be introduced. Our unitary algorithms preserve the Hamiltonian structure of the Gross-Pitaevskii equation which describes quantum turbulence in a zero-temperature Bose-Einstein condensate (BEC). As a result, parameter regimes have been uncovered which exhibit very short Poincare recurrence time, as well as a strong triple cascade structure in the kinetic energy spectrum. Moreover, a detailed examination of the incompressible kinetic energy spectrum has revealed for the first time within a turbulence simulation the k−17/5 quantum Kelvin wave cascade. By generalizing the unitary entanglement operators on the 2 qubits, a finite temperature BEC system is examined. These unitary qubit lattice algorithms are directly applicable to quantum computers as they become available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.