Abstract

Ruetsche (Interpreting quantum theories, 2011) argues that a problem of unitarily inequivalent representations arises in quantum theories with infinitely many degrees of freedom. I provide an algebraic formulation of classical field theories and show that unitarily inequivalent representations arise there as well. I argue that the classical case helps us rule out one possible response to the problem of unitarily inequivalent representations called Hilbert Space Conservatism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.