Abstract

Relying on our earlier results in the unitary group Racah-Wigner algebra, specifically designed to facilitate quantum chemical calculations of molecular electronic structure, the tensor operator formalism required for an efficient evaluation of one- and two-body matrix elements of molecular electronic Hamiltonians within the spin-adapted Gel'fand-Tsetlin basis is developed. Introducing the second quantization-like creation and annihilation vector operators at the unitary group [U(n)] level, appropriate two-box symmetric and antisymmetric irreducible tensor operators as well as adjoint tensors are defined and their matrix elements evaluated in the electronic Gel'fand-Tsetlin basis as single products of segment values. Using these tensor operators, the matrix elements of one- and two-body components of a general electronic Hamiltonian are found. Explicit expressions for all relevant quantities pertaining to at most two-column irreducible representations that are required in molecular electronic structure calculations are given. Relationships with other approaches and possible future extensions of the formalism to partitioned bases or spin-dependent Hamiltonians are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call