Abstract

A finite graph $\Gamma$ is called $G$-symmetric if $G$ is a group of automorphisms of $\Gamma$ which is transitive on the set of ordered pairs of adjacent vertices of $\Gamma$. We study a family of symmetric graphs, called the unitary graphs, whose vertices are flags of the Hermitian unital and whose adjacency relations are determined by certain elements of the underlying finite fields. Such graphs admit the unitary groups as groups of automorphisms, and they play a significant role in the classification of a family of symmetric graphs with complete quotients such that an associated incidence structure is a doubly point-transitive linear space. We give this classification in the paper and also investigate combinatorial properties of the unitary graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.