Abstract

Phase-locking neurons in the electrosensory lateral line lobe (ELL) of a weakly electric fish, Gymnarchus niloticus, fire an action potential in response to each cycle of the sinusoidal electrosensory signal (350-500 Hz) created by the fish's own electric organ. The exact firing times of the phase-locking neurons are altered (time-shifted) by capacitance of electrolocation objects or by electric organ discharges of other individuals. The magnitude of the time shifts depends on the location of the neurons' receptive field on the skin; thus, time disparities arise between the firing of phase-locking neurons. To compute these disparities, there should be a site where these phase-locking neurons converge. In this study we morphologically identified a novel cell type, which we named the "ovoidal cell", that receives the convergent projections of phase-locking neurons in the inner cell layer (ICL) of the ELL. We labeled these neurons with biocytin and examined them by light and electron microscopy. The giant cells and the S-type primary afferents, two types of phase-locking neurons, respectively terminate on the soma via chemical synapses and on the dendrite of the ovoidal cells via mixed synapses. Each terminal of the giant cells embraces the soma of an ovoidal cell, covering as much as 84% of the somatic membrane. The giant cell terminals and ovoidal cell somata were immunoreactive to SV2, a synaptic vesicle protein, but the S-afferent terminals were not, even though they contain numerous synaptic vesicles. The dendrite of the ovoidal cells also contacts the pyramidal cells of the ICL, which are known to be sensitive to time disparities. The anatomical connections of the phase-locking neurons to the ovoidal cells strongly suggest that they are involved in computing time disparity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.