Abstract

The study of quantum systems evolving from initial states to distinguishable, orthogonal final states is important for information processing applications such as quantum computing and quantum metrology. However, for most unitary evolutions and initial states the system does not evolve to an orthogonal quantum state. Here, we ask what proportion of quantum states evolve to nearly orthogonal systems as a function of the dimensionality of the Hilbert space of the system, and numerically study the evolution of quantum states in low-dimensional Hilbert spaces. We find that, as well as the speed of dynamical evolution, the level of maximum distinguishability depends critically on the Hamiltonian of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.