Abstract

Abstract If two quantum states are unitarily equivalent then their von Neumann entropies are same. Converse statement also holds, which was proved by Kan He et al. [Applied Mathematics Letters, 2012;25(8):1391–1393 [1]]. In this paper, we extend it to bipartite quantum system and prove a sufficient and necessary condition of unitary equivalence of quantum states associated with the von Neumann entropy of the composite states. A sufficient condition is also provided which involves the von Neumann entropy of the quantum state of the component subsystems. Bipartite quantum system is of interest in quantum cryptography and quantum information processing. Quantum key distribution also uses a bipartite quantum system shared between two parties namely Alice and Bob.KeywordsQuantum statesUnitary equivalenceVon Neumann entropy

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.