Abstract

Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call