Abstract

1. The magnitude and kinetics of inhibitory postsynaptic currents (IPSCs) evoked in the goldfish Mauthner (M-) cell by intracellular stimulation of identified presynaptic interneurons (unitary responses) and by activation of the recurrent collateral network were determined with single-and double electrode voltage-clamp techniques. 2. The peak magnitude of the inhibitory conductance changes were 5610 +/- 4800 nS (mean +/- SD; n = 13) for the collateral response, and 144 +/- 44 nS (n = 7) for the unitary IPSCs. These synaptic conductances, which are due to the opening of Cl- channels, were independent of the degree of Cl- -loading of the M-cell. 3. The peak amplitude of the collateral inhibitory postsynaptic potential (IPSP) was a constant fraction (0.52 +/- 0.06) of the driving force, which was determined from current-voltage plots for both types of IPSCs and ranged from 10 to 37 mV. These findings confirm indirect measurements from previous current-clamp studies and validate the normalization procedure used to previously calculate synaptic conductances from IPSP amplitudes, a method that therefore may be applicable to other central neurons. 4. At the resting membrane potential, the rise time of the unitary IPSCs was 0.34 +/- 0.07 ms (n = 18), whereas their decay was exponential, with a time constant of 5.7 +/- 1.1 ms (n = 16). 5. Iontophoretic and intramuscular applications of the glycine antagonist strychnine reduced or blocked M-cell inhibitory responses, without altering the excitability of the presynaptic neurons, or the driving force. 6. Amplitude fluctuations of unitary IPSPs recorded during partial blockade by strychnine were analyzed according to a binomial model of quantal transmitter release. In one experimental series, comparison of the binomial parameters before and after applying the antagonist indicated that only quantal size, q, was reduced, whereas n, the number of available release units, and p, the probability of release, were unaffected by strychnine. In a second series, the individual presynaptic cells were injected with horseradish peroxidase (HRP), and it was found that the correlation between n and the number of stained presynaptic boutons and, therefore, of active zones, was maintained in the presence of the drug. No evidence was found for silent synapses in these conditions. 7. The quantal conductance, gq, was estimated from the binomially derived quantal size, in millivolts, and the voltage-clamp measurements of the IPSP driving force and M-cell input conductance. gq averaged 21.5 nS in control conditions and 12.3 nS in the presence of strychnine.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call