Abstract
Probability measures on the space of Hermitian matrices which are ergodic for the conjugation action of an infinite-dimensional unitary group are considered. It is established that the eigenvalues of random matrices distributed with respect to these measures satisfy the law of large numbers. The relationship between such models of random matrices and objects in free probability, freely infinitely divisible measures, is also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.