Abstract

In this paper we investigate the hedging problem of a unit-linked life insurance contract via the local risk-minimization approach, when the insurer has a restricted information on the market. In particular, we consider an endowment insurance contract, that is a combination of a term insurance policy and a pure endowment, whose final value depends on the trend of a stock market where the premia the policyholder pays are invested. To allow for mutual dependence between the financial and the insurance markets, we use the progressive enlargement of filtration approach. We assume that the stock price process dynamics depends on an exogenous unobservable stochastic factor that also influences the mortality rate of the policyholder. We characterize the optimal hedging strategy in terms of the integrand in the Galtchouk–Kunita–Watanabe decomposition of the insurance claim with respect to the minimal martingale measure and the available information flow. We provide an explicit formula by means of predictable projection of the corresponding hedging strategy under full information with respect to the natural filtration of the risky asset price and the minimal martingale measure. Finally, we discuss applications in a Markovian setting via filtering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.