Abstract

As renewable wind energy penetration rates continue to increase, one of the major challenges facing grid operators is the question of how to control transmission grids in a reliable and a cost-efficient manner. The stochastic nature of wind forces an alteration of traditional methods for solving day-ahead and look-ahead unit commitment and dispatch. In particular, uncontrollable wind generation increases the risk of random component failures. To address these questions, we present an N-1 Security and Chance-Constrained Unit Commitment (SCCUC) that includes the modeling of generation reserves that respond to wind fluctuations and tertiary reserves to account for single component outages. The basic formulation is reformulated as a mixed-integer second-order cone problem to limit the probability of failure. We develop three different algorithms to solve the problem to optimality and present a detailed case study on the IEEE RTS-96 single area system. The case study assesses the economic impacts due to contingencies and various degrees of wind power penetration into the system and also corroborates the effectiveness of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.