Abstract

When the Lagrangian relaxation based methods are applied to solve power system unit commitment, the identical solutions to the subproblems associated with identical units may cause the dual solution to be far away from the optimal solution and serious solution oscillations. As a result, the quality of the feasible solution obtained may be very unsatisfactory. This issue has been long recognized as an inherent disadvantage of Lagrangian relaxation based methods. In this paper, the homogeneous solution issue is identified and analyzed through a simple example. Based on this analysis, a successtve subproblem solving method is developed. The new method combines the concepts of augmented Lagrangian relaxation and surrogate subgradient to produce a good search direction at the high level. The low-level subproblems including those corresponding to the identical units are solved successively so that the commitments of the identical units may not be homogeneous in the dual solution. Compared with the standard Lagrangian relaxation method, the new method can obtain better dual solutions and avoid the solution oscillations. Numerical testing shows the new method is efficient and the quality of the feasible solution is greatly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.