Abstract

The sample matrix inversion (SMI) beamformer implements Capon's minimum variance distortionless (MVDR) beamforming using the sample covariance matrix (SCM). In a snapshot limited environment, the SCM is poorly conditioned resulting in a suboptimal performance from the SMI beamformer. Imposing structural constraints on the SCM estimate to satisfy known theoretical properties of the ensemble MVDR beamformer mitigates the impact of limited snapshots on the SMI beamformer performance. Toeplitz rectification and bounding the norm of weight vector are common approaches for such constrains. This paper proposes the unit circle rectification technique which constraints the SMI beamformer to satisfy a property of the ensemble MVDR beamformer: for narrowband planewave beamforming on a uniform linear array, the zeros of the MVDR weight array polynomial must fall on the unit circle. Numerical simulations show that the resulting unit circle MVDR (UC MVDR) beamformer frequently improves the suppression of both discrete interferers and white background noise compared to the classic SMI beamformer. Moreover, the UC MVDR beamformer is shown to suppress discrete interferers better than the MVDR beamformer diagonally loaded to maximize the SINR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call