Abstract

An analysis for the cross-flow heat exchanger is conducted for electronic cooling applications, with the design goal of dissipating 175W from high power chip by maintaining the chip temperature within 85 °C in a compact space. Liquid to liquid heat exchanger in cross flow arrangement is preferred due to its compact size and high effectiveness. A volume averaging formulation is developed to determine the heat transfer coefficient at the unit cell level. The effects of channel shape, channel size, and heat exchanger material are examined through the heat transfer in the unit cell model. The obtained heat transfer coefficients are also used for the estimation of the heat exchanger thermal performance based on the effectiveness-NTU method. To verify the volume averaging formulation, a full field heat and fluid flow over the cross-flow heat exchangers are investigated through numerical computation. The amount of heat exchanged is extracted and compared with the unit cell model prediction. A fairly good agreement is obtained between the two approaches. Fabrication of cross-flow heat exchanger is further discussed to meet the design target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.