Abstract

With the advanced technology in persistent random access memory (PRAM), PRAM such as three-dimen-sional XPoint memory and Phase Change Memory (PCM) is emerging as a promising candidate for the next-generation medium for both (main) memory and storage. Previous works mainly focus on how to overcome the possible endurance issues of PRAM while both main memory and storage own a partition on the same PRAM device. However, a holistic software-level system design should be proposed to fully exploit the benefit of PRAM. This article proposes a <underline>uni</underline>on <underline>stor</underline>age <underline>f</underline>ile <underline>s</underline>ystem (UnistorFS), which aims to jointly manage the PRAM resource for main memory and storage. The proposed UnistorFS realizes the concept of using the PRAM resource as memory and storage interchangeably to achieve resource sharing while main memory and storage coexist on the same PRAM device with no partition or logical boundary. This approach not only enables PRAM resource sharing but also eliminates unnecessary data movements between main memory and storage since they are already in the same address space and can be accessed directly. At the same time, the proposed UnistorFS ensures the persistence of file data and sanity of the file system after power recycling. A series of experiments was conducted on a modified Linux kernel. The results show that the proposed UnistorFS can eliminate unnecessary memory accesses and outperform other PRAM-based file systems for 0.2--8.7 times in terms of read/write performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call