Abstract

Decapod unistellate spermatozoa are primarily characterized by the presence of a single appendage (spike) extending from the acrosome. Among decapods, this type of spermatozoon is found only in shrimps of the families Sicyoniidae, Penaeidae, and Solenoceridae (suborder Dendrobranchiata) and of the infraorder Caridea (suborder Pleocyemata). This review comparatively discusses the morphological diversity of unistellate spermatozoal ultrastructure among these decapods, as well as the role of the primary structures involved in the fertilization and spermatozoal capacitation. Furthermore, the use of the unistellate spermatozoal ultrastructure to support phylogenetic relationships and of the current phylogenetic evidences to investigate the evolution of spermatozoa of decapods is discussed. Morphologically, the main differences between caridean and dendrobranchiate unistellate spermatozoa are the shape of the main body (inverted cup-shaped, and spherical, bulged or elongate, respectively) and complexity of the acrosomal region. The latter is directly related to the type of fertilization. For example, dendrobranchiates have more complex acrosomal regions than that carideans, and fertilization involves a visible acrosome reaction, which is not observed in carideans. Ultrastructural changes of spermatozoa throughout capacitation are unknown in carideans, but for dendrobranchiates generally occur in the acrosomal vesicle and subacrosomal region throughout attachment of the spermatophore to the thelycum, enabling fertilization by the spermatozoa. Comparative evaluation of spermatozoal morphology and current phylogenetic evidences corroborates the hypothesis that the spermatozoal spike of carideans and dendrobranchiates is the result of convergent evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call